Back to skills

Scientific Db Fda Database

Query openFDA API for drugs, devices, adverse events, recalls, regulatory submissions (510k, PMA), substance identification (UNII), for FDA regulatory data analysis and safety research.

2 stars
0 votes
0 copies
0 views
Added 12/19/2025
developmentpythongobashreactgitapidatabaseperformancedocumentation

Works with

api
Download Zip
Files
SKILL.md
---
name: fda-database
description: "Query openFDA API for drugs, devices, adverse events, recalls, regulatory submissions (510k, PMA), substance identification (UNII), for FDA regulatory data analysis and safety research."
---

# FDA Database Access

## Overview

Access comprehensive FDA regulatory data through openFDA, the FDA's initiative to provide open APIs for public datasets. Query information about drugs, medical devices, foods, animal/veterinary products, and substances using Python with standardized interfaces.

**Key capabilities:**
- Query adverse events for drugs, devices, foods, and veterinary products
- Access product labeling, approvals, and regulatory submissions
- Monitor recalls and enforcement actions
- Look up National Drug Codes (NDC) and substance identifiers (UNII)
- Analyze device classifications and clearances (510k, PMA)
- Track drug shortages and supply issues
- Research chemical structures and substance relationships

## When to Use This Skill

This skill should be used when working with:
- **Drug research**: Safety profiles, adverse events, labeling, approvals, shortages
- **Medical device surveillance**: Adverse events, recalls, 510(k) clearances, PMA approvals
- **Food safety**: Recalls, allergen tracking, adverse events, dietary supplements
- **Veterinary medicine**: Animal drug adverse events by species and breed
- **Chemical/substance data**: UNII lookup, CAS number mapping, molecular structures
- **Regulatory analysis**: Approval pathways, enforcement actions, compliance tracking
- **Pharmacovigilance**: Post-market surveillance, safety signal detection
- **Scientific research**: Drug interactions, comparative safety, epidemiological studies

## Quick Start

### 1. Basic Setup

```python
from scripts.fda_query import FDAQuery

# Initialize (API key optional but recommended)
fda = FDAQuery(api_key="YOUR_API_KEY")

# Query drug adverse events
events = fda.query_drug_events("aspirin", limit=100)

# Get drug labeling
label = fda.query_drug_label("Lipitor", brand=True)

# Search device recalls
recalls = fda.query("device", "enforcement",
                   search="classification:Class+I",
                   limit=50)
```

### 2. API Key Setup

While the API works without a key, registering provides higher rate limits:
- **Without key**: 240 requests/min, 1,000/day
- **With key**: 240 requests/min, 120,000/day

Register at: https://open.fda.gov/apis/authentication/

Set as environment variable:
```bash
export FDA_API_KEY="your_key_here"
```

### 3. Running Examples

```bash
# Run comprehensive examples
python scripts/fda_examples.py

# This demonstrates:
# - Drug safety profiles
# - Device surveillance
# - Food recall monitoring
# - Substance lookup
# - Comparative drug analysis
# - Veterinary drug analysis
```

## FDA Database Categories

### Drugs

Access 6 drug-related endpoints covering the full drug lifecycle from approval to post-market surveillance.

**Endpoints:**
1. **Adverse Events** - Reports of side effects, errors, and therapeutic failures
2. **Product Labeling** - Prescribing information, warnings, indications
3. **NDC Directory** - National Drug Code product information
4. **Enforcement Reports** - Drug recalls and safety actions
5. **Drugs@FDA** - Historical approval data since 1939
6. **Drug Shortages** - Current and resolved supply issues

**Common use cases:**
```python
# Safety signal detection
fda.count_by_field("drug", "event",
                  search="patient.drug.medicinalproduct:metformin",
                  field="patient.reaction.reactionmeddrapt")

# Get prescribing information
label = fda.query_drug_label("Keytruda", brand=True)

# Check for recalls
recalls = fda.query_drug_recalls(drug_name="metformin")

# Monitor shortages
shortages = fda.query("drug", "drugshortages",
                     search="status:Currently+in+Shortage")
```

**Reference:** See `references/drugs.md` for detailed documentation

### Devices

Access 9 device-related endpoints covering medical device safety, approvals, and registrations.

**Endpoints:**
1. **Adverse Events** - Device malfunctions, injuries, deaths
2. **510(k) Clearances** - Premarket notifications
3. **Classification** - Device categories and risk classes
4. **Enforcement Reports** - Device recalls
5. **Recalls** - Detailed recall information
6. **PMA** - Premarket approval data for Class III devices
7. **Registrations & Listings** - Manufacturing facility data
8. **UDI** - Unique Device Identification database
9. **COVID-19 Serology** - Antibody test performance data

**Common use cases:**
```python
# Monitor device safety
events = fda.query_device_events("pacemaker", limit=100)

# Look up device classification
classification = fda.query_device_classification("DQY")

# Find 510(k) clearances
clearances = fda.query_device_510k(applicant="Medtronic")

# Search by UDI
device_info = fda.query("device", "udi",
                       search="identifiers.id:00884838003019")
```

**Reference:** See `references/devices.md` for detailed documentation

### Foods

Access 2 food-related endpoints for safety monitoring and recalls.

**Endpoints:**
1. **Adverse Events** - Food, dietary supplement, and cosmetic events
2. **Enforcement Reports** - Food product recalls

**Common use cases:**
```python
# Monitor allergen recalls
recalls = fda.query_food_recalls(reason="undeclared peanut")

# Track dietary supplement events
events = fda.query_food_events(
    industry="Dietary Supplements")

# Find contamination recalls
listeria = fda.query_food_recalls(
    reason="listeria",
    classification="I")
```

**Reference:** See `references/foods.md` for detailed documentation

### Animal & Veterinary

Access veterinary drug adverse event data with species-specific information.

**Endpoint:**
1. **Adverse Events** - Animal drug side effects by species, breed, and product

**Common use cases:**
```python
# Species-specific events
dog_events = fda.query_animal_events(
    species="Dog",
    drug_name="flea collar")

# Breed predisposition analysis
breed_query = fda.query("animalandveterinary", "event",
    search="reaction.veddra_term_name:*seizure*+AND+"
           "animal.breed.breed_component:*Labrador*")
```

**Reference:** See `references/animal_veterinary.md` for detailed documentation

### Substances & Other

Access molecular-level substance data with UNII codes, chemical structures, and relationships.

**Endpoints:**
1. **Substance Data** - UNII, CAS, chemical structures, relationships
2. **NSDE** - Historical substance data (legacy)

**Common use cases:**
```python
# UNII to CAS mapping
substance = fda.query_substance_by_unii("R16CO5Y76E")

# Search by name
results = fda.query_substance_by_name("acetaminophen")

# Get chemical structure
structure = fda.query("other", "substance",
    search="names.name:ibuprofen+AND+substanceClass:chemical")
```

**Reference:** See `references/other.md` for detailed documentation

## Common Query Patterns

### Pattern 1: Safety Profile Analysis

Create comprehensive safety profiles combining multiple data sources:

```python
def drug_safety_profile(fda, drug_name):
    """Generate complete safety profile."""

    # 1. Total adverse events
    events = fda.query_drug_events(drug_name, limit=1)
    total = events["meta"]["results"]["total"]

    # 2. Most common reactions
    reactions = fda.count_by_field(
        "drug", "event",
        search=f"patient.drug.medicinalproduct:*{drug_name}*",
        field="patient.reaction.reactionmeddrapt",
        exact=True
    )

    # 3. Serious events
    serious = fda.query("drug", "event",
        search=f"patient.drug.medicinalproduct:*{drug_name}*+AND+serious:1",
        limit=1)

    # 4. Recent recalls
    recalls = fda.query_drug_recalls(drug_name=drug_name)

    return {
        "total_events": total,
        "top_reactions": reactions["results"][:10],
        "serious_events": serious["meta"]["results"]["total"],
        "recalls": recalls["results"]
    }
```

### Pattern 2: Temporal Trend Analysis

Analyze trends over time using date ranges:

```python
from datetime import datetime, timedelta

def get_monthly_trends(fda, drug_name, months=12):
    """Get monthly adverse event trends."""
    trends = []

    for i in range(months):
        end = datetime.now() - timedelta(days=30*i)
        start = end - timedelta(days=30)

        date_range = f"[{start.strftime('%Y%m%d')}+TO+{end.strftime('%Y%m%d')}]"
        search = f"patient.drug.medicinalproduct:*{drug_name}*+AND+receivedate:{date_range}"

        result = fda.query("drug", "event", search=search, limit=1)
        count = result["meta"]["results"]["total"] if "meta" in result else 0

        trends.append({
            "month": start.strftime("%Y-%m"),
            "events": count
        })

    return trends
```

### Pattern 3: Comparative Analysis

Compare multiple products side-by-side:

```python
def compare_drugs(fda, drug_list):
    """Compare safety profiles of multiple drugs."""
    comparison = {}

    for drug in drug_list:
        # Total events
        events = fda.query_drug_events(drug, limit=1)
        total = events["meta"]["results"]["total"] if "meta" in events else 0

        # Serious events
        serious = fda.query("drug", "event",
            search=f"patient.drug.medicinalproduct:*{drug}*+AND+serious:1",
            limit=1)
        serious_count = serious["meta"]["results"]["total"] if "meta" in serious else 0

        comparison[drug] = {
            "total_events": total,
            "serious_events": serious_count,
            "serious_rate": (serious_count/total*100) if total > 0 else 0
        }

    return comparison
```

### Pattern 4: Cross-Database Lookup

Link data across multiple endpoints:

```python
def comprehensive_device_lookup(fda, device_name):
    """Look up device across all relevant databases."""

    return {
        "adverse_events": fda.query_device_events(device_name, limit=10),
        "510k_clearances": fda.query_device_510k(device_name=device_name),
        "recalls": fda.query("device", "enforcement",
                           search=f"product_description:*{device_name}*"),
        "udi_info": fda.query("device", "udi",
                            search=f"brand_name:*{device_name}*")
    }
```

## Working with Results

### Response Structure

All API responses follow this structure:

```python
{
    "meta": {
        "disclaimer": "...",
        "results": {
            "skip": 0,
            "limit": 100,
            "total": 15234
        }
    },
    "results": [
        # Array of result objects
    ]
}
```

### Error Handling

Always handle potential errors:

```python
result = fda.query_drug_events("aspirin", limit=10)

if "error" in result:
    print(f"Error: {result['error']}")
elif "results" not in result or len(result["results"]) == 0:
    print("No results found")
else:
    # Process results
    for event in result["results"]:
        # Handle event data
        pass
```

### Pagination

For large result sets, use pagination:

```python
# Automatic pagination
all_results = fda.query_all(
    "drug", "event",
    search="patient.drug.medicinalproduct:aspirin",
    max_results=5000
)

# Manual pagination
for skip in range(0, 1000, 100):
    batch = fda.query("drug", "event",
                     search="...",
                     limit=100,
                     skip=skip)
    # Process batch
```

## Best Practices

### 1. Use Specific Searches

**DO:**
```python
# Specific field search
search="patient.drug.medicinalproduct:aspirin"
```

**DON'T:**
```python
# Overly broad wildcard
search="*aspirin*"
```

### 2. Implement Rate Limiting

The `FDAQuery` class handles rate limiting automatically, but be aware of limits:
- 240 requests per minute
- 120,000 requests per day (with API key)

### 3. Cache Frequently Accessed Data

The `FDAQuery` class includes built-in caching (enabled by default):

```python
# Caching is automatic
fda = FDAQuery(api_key=api_key, use_cache=True, cache_ttl=3600)
```

### 4. Use Exact Matching for Counting

When counting/aggregating, use `.exact` suffix:

```python
# Count exact phrases
fda.count_by_field("drug", "event",
                  search="...",
                  field="patient.reaction.reactionmeddrapt",
                  exact=True)  # Adds .exact automatically
```

### 5. Validate Input Data

Clean and validate search terms:

```python
def clean_drug_name(name):
    """Clean drug name for query."""
    return name.strip().replace('"', '\\"')

drug_name = clean_drug_name(user_input)
```

## API Reference

For detailed information about:
- **Authentication and rate limits** → See `references/api_basics.md`
- **Drug databases** → See `references/drugs.md`
- **Device databases** → See `references/devices.md`
- **Food databases** → See `references/foods.md`
- **Animal/veterinary databases** → See `references/animal_veterinary.md`
- **Substance databases** → See `references/other.md`

## Scripts

### `scripts/fda_query.py`

Main query module with `FDAQuery` class providing:
- Unified interface to all FDA endpoints
- Automatic rate limiting and caching
- Error handling and retry logic
- Common query patterns

### `scripts/fda_examples.py`

Comprehensive examples demonstrating:
- Drug safety profile analysis
- Device surveillance monitoring
- Food recall tracking
- Substance lookup
- Comparative drug analysis
- Veterinary drug analysis

Run examples:
```bash
python scripts/fda_examples.py
```

## Additional Resources

- **openFDA Homepage**: https://open.fda.gov/
- **API Documentation**: https://open.fda.gov/apis/
- **Interactive API Explorer**: https://open.fda.gov/apis/try-the-api/
- **GitHub Repository**: https://github.com/FDA/openfda
- **Terms of Service**: https://open.fda.gov/terms/

## Support and Troubleshooting

### Common Issues

**Issue**: Rate limit exceeded
- **Solution**: Use API key, implement delays, or reduce request frequency

**Issue**: No results found
- **Solution**: Try broader search terms, check spelling, use wildcards

**Issue**: Invalid query syntax
- **Solution**: Review query syntax in `references/api_basics.md`

**Issue**: Missing fields in results
- **Solution**: Not all records contain all fields; always check field existence

### Getting Help

- **GitHub Issues**: https://github.com/FDA/openfda/issues
- **Email**: open-fda@fda.hhs.gov

Comments (0)

No comments yet. Be the first to comment!